Scale-Up and Optimization of a Continuous Flow Carboxylation of N-Boc-4,4-difluoropiperidine Using s-BuLi in THF

Jean-Paul Kestemont, James R. Frost, Jérôme Jacq, Patrick Pasau, Frédéric Perl, Julien Brown, and Matthieu Tissot*

Cite This: https://doi.org/10.1021/acs.oprd.1c00092

ABSTRACT: We report a large-scale carboxylation of N-Boc-4,4-difluoropiperidine (1) enabled by a continuous flow process. The flow process involved N-Boc-directed α-deprotonation using s-BuLi in THF and subsequent trapping with CO2 gas. Flow chemistry enabled the safe and scalable preparation of 400 g of carboxylic acid 2 over the course of a day to support our medicinal chemistry research program.

KEYWORDS: continuous chemistry, carboxylation, organolithium, microreactor, flash chemistry, gas—liquid

1. INTRODUCTION

Carboxylic acids are useful and attractive building blocks in organic synthesis. Recently, the emergence of photochemical decarboxylative transformations1 has widened the scope of transformations offered by this key functionality. Among the known methods of preparation, carboxylation of organolithiums with abundant and inexpensive CO2 remains one of the most attractive preparatory techniques available.2 However, CO2 gas handling and the safety concerns associated with the use of organolithiums in batch mode remain important hurdles to performing this chemistry on a large scale. In this context, the emergence of organolithium chemistry in continuous flow3 and the concept of flash chemistry (pioneered by Yoshida)4 offer an opportunity to develop an efficient, scalable, and safe solution to access carboxylic acids under flow conditions.5

2. BACKGROUND

N-Boc-4,4-difluoropiperidine-2-carboxylic acid (2) has recently emerged as a key intermediate requiring a large-scale synthesis. Acid 2 was initially prepared in batch starting from the considerably less expensive precursor N-Boc-4,4-difluoropiperidine (1) using the complex-induced proximity effect (CIPE) protocol for lithiation of N-Boc heterocycles reported by Beak.6 This result was quite remarkable since side reactions could have arisen, such as the elimination of HF from the CF2 group or intramolecular displacement of fluorine leading to cyclopropane formation (as observed following lithiation with 4-chloropiperidine).7,8 The lithiated piperidine was subsequently trapped with CO2 to afford 2 in 54% isolated yield when 5 g was used (condition A, Scheme 1).9,10 O’Brien and co-workers reported an α-carboxylation of N-Boc-pyrrolidines with s-BuLi, replacing the TMEDA/Et2O combination used in Beak’s protocol by THF.11

In this case the metatation of N-Boc-pyrrolidines is faster than the well-known reaction between THF and s-BuLi. This simpler protocol was also applied to 1, this time providing 2 in 64% isolated yield (condition B, Scheme 1). Decomposition of the lithiated piperidine could be responsible for the moderate yield of this transformation, as recently disclosed by O’Brien on the pyrrolidine system.12

On the basis of this satisfactory result, scale-up in batch was considered and supported by several examples from process groups,12 but limitations surrounding the handling of CO2 gas and organolithium reagents combined with the relatively high dilution of the process prompted us to investigate a flow setup.

3. PROCESS DEVELOPMENT

We performed the first laboratory flow experiments using a Vapourtec HPLC pump to dispense the solution of 1, a Sydros syringe pump to dispense s-BuLi, a 2 mL Uniqsis glass microreactor (R1), and a 2 mL coil PTFE reactor (R2’) connected to the reactor collection vessel with a 0.5 mL piece of PTFE tubing (R2″). The temperatures (T) of both reactors (R1 and R2’) were adjusted with a polar bear cooling system.13 In the standard setup, a 0.4 M solution of 1 is mixed with a solution of s-BuLi (1.3 M in cyclohexane) in R1. Then the resulting mixture is intercepted by a stream of CO2 dispensed by a Vapourtec SF10 peristaltic pump using a T-mixer directly connected to the output of R1. The heterogeneous mixture (gas/liquid) was then directed into R2’ to achieve the trapping of the lithiated piperidine derivative with CO2 (Scheme 2). The output stream was collected in a batch reactor containing aqueous 1 M ammonium chloride. With 1.3 equiv of s-BuLi and 1.34 equiv of CO2 at T = −10 °C, 87% conversion was observed after residence times of 17.1 and 2.2 s in R1 and R2’, respectively (entry 1, Table 1). The lower control of the exotherm when the
temperature was set to 0 °C seems to induce a decrease in conversion (entry 2, Table 1), likely stemming from side reactions of s-BuLi and from a lower solubility of CO2. Augmentation of the number of equivalents of CO2 injected displayed no significant impact on the conversion (entry 3, Table 1). However, prolonging the residence time of the carboxylation step to 2.7 s (with R2″ = 1 mL) enhanced the conversion to 91% (entry 4, Table 1). Interestingly, when the amount of s-BuLi was increased to 1.6 equiv, the conversion dropped to 65% (entry 5, Table 1). We hypothesized that the excess s-BuLi reacts with CO2 faster than the lithiated piperidine. Thereafter, we improved the productivity without negatively impacting the conversion (94%) by increasing all of the flow rates, leading to residence times of 12.2 and 1.7 s in R1 and R2, respectively (entry 6, Table 1). Finally, we ran a scale-up experiment over 111 min without interruption to transform 69 g of 1 into carboxylic acid 2 in 58% isolated yield (entry 7, Table 1).

To prepare larger quantities of the desired compound and improve safety, our process was transferred to a new platform. The large-scale implementation included the use of Syrdos syringe pumps to deliver s-BuLi and 1, and a Brooks mass flow controller (MFC) was used for CO2 (Scheme 3). The lithiation/carboxylation sequence was performed in a single glass microreactor (XXL-ST-05, Little Thing Factory) with integrated heat exchangers connected to a thermostat. The microreactor was made of two sections (R1 = 2 mL and R2 = 2 mL) to control the lithiation and carboxylation reactions sequentially. Pressure sensors (P1 and P2) were installed on a Modular Micro-Reaction System (MMRS) manufactured by Ehrfeld Mikrotechnik. The pumps, MFC, thermostat, and pressure sensors were connected to a HiTec Zang LabManager and controlled by LabVision software (Scheme 3). During the process, LabVision Software was programmed to stop all of the

Table 1. Experimental Results for the Continuous Flow Carboxylation Reaction

<table>
<thead>
<tr>
<th>entry</th>
<th>equiv of s-BuLi/CO2</th>
<th>T [°C]</th>
<th>flow rates of s-BuLi/1/CO2 [mL/min]</th>
<th>resident times in R1/R2 [s]</th>
<th>conv [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3/1.34</td>
<td>-10</td>
<td>2/5/60</td>
<td>17.1/2.2</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>1.3/1.34</td>
<td>0</td>
<td>2/5/60</td>
<td>17.1/2.2</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>1.3/2</td>
<td>0</td>
<td>2/5/90</td>
<td>17.1/1.5</td>
<td>87</td>
</tr>
<tr>
<td>4</td>
<td>1.3/1.34</td>
<td>-10</td>
<td>2/5/60</td>
<td>17.1/2.7</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>1.6/1.34</td>
<td>-10</td>
<td>2.5/5/60</td>
<td>16.0/2.2</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>1.3/1.28</td>
<td>-10</td>
<td>2.8/7/60</td>
<td>12.2/1.7</td>
<td>94</td>
</tr>
<tr>
<td>7</td>
<td>1.3/1.28</td>
<td>-10</td>
<td>2.8/7/60</td>
<td>12.2/1.7</td>
<td>94 (58%/69 g)</td>
</tr>
</tbody>
</table>

a Sampling was performed directly at the output of the process in an aqueous citric acid (1 M)/i-PrOAc mixture (1:1 v/v). *b* Conversion was determined at steady state by 19F NMR spectroscopy. *c* The residence time t_R2 was calculated with V_R2 = V_R2' + V_R2″.14 *d* Temperature set on the cooling system. *e* Isolated yield/mass of starting material converted are given in parentheses. The output stream was quenched in a vessel containing aqueous NH4Cl (1 M) cooled to 0 °C.
Table 2. Experimental Results for Optimization and Scale-Up of the Carboxylation Process

<table>
<thead>
<tr>
<th>entry</th>
<th>equiv of s-BuLi/CO₂</th>
<th>T [°C]</th>
<th>flow rates of s-BuLi/1/CO₂ (mL/min)</th>
<th>residence times in R1/R2 [s]</th>
<th>conv. [%]</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3/1.28</td>
<td>−10</td>
<td>2.8/7/80</td>
<td>12.2/4</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.3/1.6</td>
<td>−10</td>
<td>2.8/7/100</td>
<td>12.2/3.3</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.3/2.4</td>
<td>−10</td>
<td>2.8/7/150</td>
<td>12.2/2.3</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.3/2.4</td>
<td>−20</td>
<td>2.8/7/150</td>
<td>12.2/2.3</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.3/2.4</td>
<td>−20</td>
<td>2.8/7/150</td>
<td>12.2/2.3</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.3/2.4</td>
<td>−40</td>
<td>8.4/21/450</td>
<td>4.1/0.8</td>
<td>83</td>
<td>(41%/44 g)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.3/2.4</td>
<td>−40</td>
<td>8.4/21/450</td>
<td>4.1/0.8</td>
<td>98 (65%/177 g)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Sampling was performed directly at the output of the process in an aqueous citric acid (1 M)/i-ProOAc mixture (1:1 v/v). b) Conversion was determined at steady state by 19F NMR spectroscopy. c) The residence time t₁ was calculated with V₉₁ = V₋₁ + V₋₂. d) Temperature set on the cooling system. e) Isolated yield/mass of starting material converted are shown in parentheses. f) The output stream was quenched in a vessel containing aqueous NH₄Cl (1 M) cooled to 0 °C.

<table>
<thead>
<tr>
<th>entry</th>
<th>equiv of s-BuLi/CO₂</th>
<th>T [°C]</th>
<th>flow rates of s-BuLi/1/CO₂ (mL/min)</th>
<th>residence times in R1/R2 [s]</th>
<th>conv. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.8/7</td>
<td>−10</td>
<td>8.4/21/450</td>
<td>4.1/0.8</td>
<td>83</td>
</tr>
<tr>
<td>20</td>
<td>2.8/7</td>
<td>−10</td>
<td>8.4/21/450</td>
<td>4.1/0.8</td>
<td>98 (65%/177 g)</td>
</tr>
</tbody>
</table>

* Sampling was performed directly at the output of the process in an aqueous citric acid (1 M)/i-ProOAc mixture (1:1 v/v). Conversion was determined at steady state by 19F NMR spectroscopy. Temperature set on the cooling system. Isolated yield/mass of starting material converted are shown in parentheses. The output stream was quenched in a vessel containing aqueous NH₄Cl (1 M) cooled to 0 °C.

The optimized conditions were run over 95 min with no interruption, and 134 g of 2 was obtained in 65% overall yield with a productivity of 85 g/h (entry 7, Table 2). At times, lithium salt precipitation was observed at the mixing point between 2 and s-BuLi, which led to clogging and an increase in pressure in the system. Consequently, a washing procedure was used during the production campaign (see the Supporting Information for a detailed flow setup and procedure) between each run, resulting in the preparation of up to 400 g of acid 2 over the course of a day.

4. CONCLUSION

An organolithium flow platform allowing the preparation of multigram quantities of key carboxylic acid 2 has been developed. This gas–liquid flow protocol highlights the use of s-BuLi and CO₂ to enable the carboxylation of N-Boc-4,4-difluoropiperidine with a product throughput of 85 g/h in an 8 mL reactor, corresponding to a space-time yield of 10.6 kg L⁻¹ h⁻¹. The safety and robustness of the process was ensured by the integration of our equipment with a control system. Ongoing work within our research group will further expand this platform to new organometallic reactions.

5. EXPERIMENTAL SECTION

Typical Procedure for the Scaled-Up Flow Lithiation/Carboxylation Sequence. With the setup described in Scheme 3, a solution of piperidine 1 (176.8 g, 772 mmol, 0.4 M in THF) was pumped at a rate of 21 mL/min and mixed in a microreactor (after precooking) with a solution of s-BuLi (1.3 M in cyclohexane) pumped at a rate of 8.4 mL/min (1.3 equiv) (both solutions were enganged simultaneously in the flow setup). The mixture was then passed through a first zone of the microreactor (volume of 2 mL and a total flow rate of 29.4 mL/min, giving a residence time of 4.1 s). The resulting solution of organolithium was then intercepted in the microreactor with a stream of CO₂ dispensed at a rate of 450 mL/min (2.4 equiv). The resulting mixture reacted in the second zone of the reactor. Finally, the output stream was collected in a batch reactor (via 4 mL PTFE tubing) containing aqueous 1 M ammonium chloride (2 L) (Scheme 1). The jet of the batch reactor was set at 0 °C during the collection.

The biphasic reaction mixture (Aq-1 and Org-1) was separated. The aqueous layer was stored (Aq-1). The residual organic layer (Org-1) was diluted with 250 mL of heptane and re-extracted with a further 400 mL of water. After vigorous stirring, the resulting aqueous layer was combined with Aq-1, and 1.04 L of citric acid was gradually added to this aqueous mixture until a pH of 3 was achieved (Aq-2). Isopropyl acetate (1 L) and 100 mL of heptane were added to Aq-2, and the mixture was stirred for 15 min. The layers were separated, and the organic layer (Org-3) was stored. The resulting aqueous layer (Aq-3) was re-extracted with 220 mL of isopropyl acetate and 40 mL of heptane to afford another organic layer (Org-4). The organic phases Org-3 and Org-4 were combined, washed with brine (100 mL), and dried with Na₂SO₄. The organic phase was then evaporated to afford 165 g of the crude product, to which 75 mL of isopropyl acetate was added. The resulting suspension was stirred at 40 °C for 1 h before 225 mL of heptane was added portionwise over an additional hour. The suspension was then cooled to 15 °C, stirred for 15 min, filtered, and washed successively with 30 mL of 80:20 heptane/isopropyl acetate and twice with 15 mL of heptane. A sandy white solid was isolated and dried under vacuum at 40 °C to afford pure acid 2 (134 g, 65% yield, NMR purity >95%).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.oprd.1c00092.

Experimental procedures and NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

Matthieu Tissot – UCB Biopharma SPRRL, 1420 Braine l’Alleud, Belgium; orcid.org/0000-0003-1164-6598; Email: matthieu.tissot@ucb.com

(8) The resulting organolithium could also be straightforwardly trapped with either dimethylformamide or 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2dioxaborolane as the electrophile (see the Supporting Information).

(14) Reactor 2 (R2) refers to the reactor or section (R2 vs R1) combined with the connecting piece of tubing (R2”). The residence time in R2 (t R2) was calculated as t R2 = v R2/v v R1, in which v R2 = v R2 + v R2” and v v R1 = v v R1 + v v CO2, in which v denotes volume and v denotes flow rate. However, this only an estimation of the residence time in R2 since CO2 is consumed in this process.

(16) We assumed that CO₂ is partially soluble under the reaction conditions. The use of a back-pressure regulator to maximize the solubility led to instability of the flow process.

(18) All of the reagents were precooled in the microreactor (red, green, and yellow sections in the microreactor scheme) before entering the reaction zones (blue section).

(20) A run of 95 min corresponds to the consumption of a bottle of s-BuLi (800 mL).

(21) The complete washing procedure was performed in 25 min between each run.

(22) During the production campaign, three runs of 95 min were performed with one washing procedure between each run.